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Abstract, We shldy the transmission pmblem for elecuons in an alternately linear-non-linear 
medium using a quasiperiodic Kronig-Pemey model whose variance in spatial locations obeys 
the PIbonacci rules. We find that for waves with low intensity and long wavelength, non-linearity 
enhances the lanice hmsparency. 

1. Introduction 

With the advances of new technology and experimental techniques in solid state, laser optics 
and material science, more and more artificial materials with special structures and properties 
have been invented, such as alternating metal-semiconductor or semiconductor-insulator 
layers, and threedimensional dielectric inhomogeneous lattices. Examples of the advances 
in new experimental techniques are molecular-beam epitaxy W E )  and metallorganic vapour- 
phase epitaxy (MOVPE), and more sophisticated electronic and optic materials with high 
qualities and peculiar structures and properties will be fabricated with advanced technology. 
During the last decade, there has been increasing interest in the study of localization and 
transmission of electrons, phonons, magnetons and other quasiparticles in the superlattices 
of layered structures [ N I ;  in the last few years, the activities have expanded to include 
photonic band structures in a dielectric lattice, which bears similarities to the electronic 
band structures in many aspects [5-101. 

RecentIy, there has been theoretical discussion concerning the role that non-linearity 
might play in such multilayered structures [U,  121. It has been shown that there are some 
interesting properties in a quasiperiodic superlattice when non-linearity is introduced into the 
quasiperiodic models, e.g. soliton-like states may exist [13], and transmission regions can 
be enhanced by non-linearities [ 141. In particular, a Kronig-Penney model has been studied 
with discontinuous potentials whose bivalued strengths are arranged in a quasiperiodic 
sequence [14]. It turned out that while quasiperiodicity destroys the transparency of a 
linear superlattice for small wave numbers (long waves), non-linearity enhances it in a self- 
trapped mechanism. We study a similar model but with the sequential intersire distance 
being quasiperiodic. We will consider mainly the electronic wave for positive potentials 
hut will discuss the results for negative (attractive) potentials, and compare them with 
the transmission of electromagnetic waves. Finally, we will explain the enhancement of 
transparency of the quasiperiodic chain for low-intensity long waves. 
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In section 2, we will give a general description of the model that will be considered. In 
section 3 we will discuss the propagation of plane waves and the algorithm for numerical 
calculations; we will also analyse and compare the transmission properties of the linear 
and non-linear models. Section 4 is devoted to the analysis of long-wavelength waves and 
their transmission at low intensity. A summary and a concluding discussion are given in 
section 5. 

2 Non-linear Kronig-Penney model 

We consider the general Kronig-Penney equation 

where for the linear Q, non-linear (NL) and general non-linear (GNL) models we define 

L 
g(z) = 1*(Z)l2 NI. r CUO +%lrl-(Z)I2 GNL 

where (ao, a,) are real numbers. In equation (l), $(z) represents an electronic wavefunction 
or, in a slightly modified form, is the complex amplitude of an electromagnetic plane wave 
with energy (or frequency) E along direction z [15, 161, and h is a coefficient which 
could be used to represent variation in potential height [14]. But we keep h = 1 in this 
paper. The 8 functions represent the defects in a quasi-on&dmensional conductor (e.g. 
conducting polymers) or semiconductor chain, or small non-linear dielectric regions that 
are quasiperiodidly embedded in a linear dielectric medium. These non-linear regions are 
assumed to be much smaller than the distance between adjacent linear ones. The intersite 
distances d. = zn -zn-l are assumed to be quasiperiodic and follow the Fibonacci sequence. 
There are two values of dn, d. = 1 or dn = a > 1 resulting &om the actual location of z,, 
which is determined by the rule 

with w = (1 + 4 ) / 2  being the golden mean and the bracket [ 1 denoting the integer 
part. When the intersite distance d, is a constant, it can be shown that finding the solution 
of equation (1) is equivalent to solving the problem of a non-linear tight-binding model 
[17, 181, but this is no longer true for the quasiperiodic non-linear lattices which are being 
studied here. 

In the following sections, we wi l l  be primarily working on the non-linear model, and 
the formulation can be easily extended to include the GNL model. The effects and results of 
the GNL model will be included in the figures and given brief discussions and comparisons 
with the linear model. 

3. Transmission of plane waves 

In the interval between zn and zn+l the solution of the Schrijdinger equation can be written 

(2) 

as 
qn(z) = A,&~(z-&) + B e-Wz-zd 
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where k is the wave vector. We want to establish a non-linear transfomation, connecting 
the amplitudes (An, B.) and (An-l, Bn-l) on adjacent sides of the &function potential, such 
that 

where P, is the symbolic non-linear operator, or a non-linear map which projects one set 
of complex numbers to another. The transformation is generally not symplectic, although 
the transformations on (@*, @,,') are. This is because unlike (@,, , @"'), (An,  Bn) are not 
canonical variables. Similarly as in the linear Kronig-Penney problem, straightforward 
manipulations, considering the continuity of the wave functions and discontinuity of their 
derivatives at the boundary near the potential, lead to a (non-linear) Poincar.6 map for A. 
and Bn. In order to simplify notations we define first for the amplitudes 

where d, = zn - zn-1 is the distance between two consecutive potentials. We obtain the 
following Poincare map for the non-linear model 

( ;; ) = P" ( Bn-I ) = ( B,-1+ i(A/2k)IAn-1 + &-11~(6,-1+ B.-1) 
and for the inverse transformation, we have the following: 

( $1; ) = pi1 ( 
For a finite chain of N sites, the final coefficients of the wave function are 

) (4) 
A.-, - i ( ~ k ) 1 & - 1 +  & - , I ~ ( A ~ - ~  + 

[A, + i(A/2k)lAn + BnIz(A, + ) = ( [A - i(A/2k)lAn + B.IZ(A, + B.)leikdn 

Equation (5) is a non-linear map; for various initial conditions it describes waves injected 
initially from the left, and propagating towards the right side of the chain. Therefore, 
equation (5) or its inverse form can be used to study the transmission properties of the 
lattice by assuming a given pair of either (Ao, Bo) or (An, B,). The results are analysed 
to obtain the transmission properties of the lattice. In figure 1, we show the transmission 
behaviour in the IRol- k parameter plane, where is the amplitude of the injected wave 
for the linear Kronig-Penney Fibonacci (figure I@)), the non-hear (figure I@)), and the 
GNL models (figure I@)). Dark regions represent gaps in the wave propagation whereas 
the transmitting regions are white. In the linear case, we have the typical band structure 
resulting fiom quasiperiodicity [19]. We note that the effect of non-linearity substantially 
alters this shuchue resulting in enhanced propagation for small initial intensities. The 
lattice is transparent for essentially all wavenumbers k at low intensities. In particular, the 
dominant linear gap fork 5 2 is reduced drastically. The boundary between the gap and 
the transmission regions for small k is almost linear due to the self-trapping effect of the 
non-linear medium for the long wave (section 4). In the higher-intensity region, on the other 
hand, the forbidden lines seem to coalesce together to form well defined non-linear gaps 
that are interrupted periodically by propagating resonance-like zones. The latter occur for 
k-values that are multiples of n; for these wavenumbers the non-linear term is effectively 
cancelled leading to perfect propagatiou. 

For the GNL model, the results depend on the choice of 01 values. We find that, when 
a1 < 0, the transparency is enhanced as compared with the corresponding linear case; 
otherwise, it is reduced. 
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Figure 1. Non-Wnsmiubg (black) and Wnsmiubg (white) regions for a Fibonacci lattice of 
len& N = 987 compding  to the Pibonaed number Fls. (0) The linear modeL (b) The non- 
linear model. Gap regions have disappeared for low-intensity waves with s d  wave number. 
The boundary between gap and extended slates for small k is a straight line. (e) The G m  model 
with CO = ai = 0.5. It shows mixed results for transmission. 
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To analyse further the effects of non-linearity in the model we calculate the transmission 
function f = [TIz/I&[2, where T is the transmitted amplitude at the end of the chain and 
RO = I+o[ is the incident wave amplitude at the beginning of the chain. In figure 2, we plot 
the msmission function against wavenumber k with incident wave amplitude RO = 0.2. 
As expected, the linear case shows (figure 2@)) that the transmission or gap does not 
depend on the amplitude, and a large gap area exits for small k; the non-linear model 
(figure 2(b)) demonstrates almost a total transparency for the entire spec!" of k, because 
the dependence of the interaction between the wave and the medium on the wave amplitude 
makes it easier for waves with relatively small amplitudes to transmit. The pictnre becomes 
more complicated when both linear and non-linear interactions are included. An example 
is given in figure 2(c). 

In figure 3, we plot transmission as a function of the chain length for the linear 
Fibonacci Kronig-Penney case (figure 3(u)) and the non-linear ones (figure 3(b) and (c)) 
for k = 0.2350. In the linear case the transmission drops exponentially whereas in the 
non-hear case we have windows with perfect transmissivity. In the latter system t remains 
very close to unity. Fractal shucture.~ are present for both linear and non-linear lattices 
due to the quasiperiodicity of the lattices. In figure 4, the boundary separating transmitting 
(white) from non-transmitting (grey) regions also shows a fractal shucture, especially at 
large k-values. Similar fractal behaviour has been reported by Delyon et al for a related 
model [20]. 

4. Low-intensity transparency for long waves 

In this section we use the long-wave approximation and show in detail why transparency is 
enhanced for low-intensity waves. With long waves, kd. << 1, exp(iikd,) zz 1 i ikd,. We 
will be able to solve the non-linear equations in (4) by taking the long-wave approximation. 
Let us define 

(6) 

According to equation (2), +n is the wavefunction at site n, whereas 6" is only a temporary 
variable for algebraic convenience. Then equation (4) can be expanded and regrouped to 
form +" and tn, and, by keeping only the first-order terms, it is easy to see that 

+n E +n(~n) = A, + Bn <,, = Bn - A n .  

Taking the continuum limit as k + 0, or more appropriately, k-I >> d,, equation (7) 
becomes a pair of coupled differential equations. 

where we have replaced d, with its average d. Substituting the second equation in 
equation (8) into the first one after differentiation, we obtain the following second-order 
differential wave equation: 

(9) 
h 

3;w = -k2+(n) + ;I+(n)\%n). 

We can distinguish three cases. 
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Figure 2. Transmission against wavenumber k. Ihe initial wave amplitude is 0.2 and lhe length 
of the Fibonacci chain N = 987. (0) ?he linear Kmnig-penney model (b) The non-linear 
model. It shows that transmission is enhanced for almost the whole specmm of k at low 
intensity. (c) The OM model with ria = cq = 0.5. 
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Figure 3. Transmission against chain lenw The wave amplitude is 02, and k = 0.7390.  
(U)  The linear mcdel, which shows the exponential decay of the transmission funclion f .  (b) 
The non-linear model, which a p p n  to be a maight l i e  at t = 1 in the main figure (dotred 
line), but actually has its own fmctal srmcrure, as shown in the inset. (c)  The general non-linear 
model. 

4.1. The linear case 

Replacing [@Iz with unity in equation (9) yields the linear equation 

when U’ < 0, wavenumber k is small, there are only exponential solutions, which results 
in a localized state. Roughly speaking, extended states will happen when k is of the order 
of k, = m. For example, in the previous section, we used h = 1, d = 1.618, so that 
k, = 0.786, and this result is consistent with figure I@). 

4.2. The non-linear case 

Let @(n) = @o exp[iun] be a solution of equation (9). then we find 

(10) 
h g 2  =k2 - - dl@olz. 

Unlike the linear case, whether U is real or itnaginay now depends on the intensity of the 
wave I@ol. As long as I@O[ c m k ,  there will be propagating waves and hence extended 
states. Let U = 0, we have 

Wool =mk. (11) 
Equation (1 1) represents the boundary that separates the gap state from the propagating 

state for very small k. Figure 4 shows the result from numerical calculation which agrees 
with equation (1 1) for small k. W e  used A = 1, and the average intersite distanced = 1.618. 



1148 N Sun e: a1 

0.4 

0.3 

0.2 

0.1 

0 
0 0.1 0:2 OB 0:4 0:s 

k 

Figure 4. The boundary which separates the gap &.on (grey) f" the wnsmission region 
(white) by numerical calculation. The black line is the long-waveapproximation prediction by 
equation(I1). Parametersareihesameasinfigure I. 

4.3. The general non-linear case 

Similarly, for the GNL model, the low-intensity wave equation becomes 

For a solution of the type of p(n) = Jloexp[iun], we find 

Generally, transmission would be more difficult for small k because of the presence of 
the linear term, and it will get worse if +I > 0. Compared with the corresponding linear 
model, better transmission would be achieved for small wavenumber k if the non-linear 
term dominates over the linear term, (11 >> ao. 

5. Conduding remark 

The main result that we have shown in the present work is related to the enhancement at low 
wave intensities of the propagating properties of a spatially quasiperiodic Kronig-Penney- 
type model when nowlinearity is added to the model. Non-linearity in the form contained 
in equation (1) is shown to assist the waves in defying the quasi-random properties of the 
medium. This effect seems also to be present in genuine non-linear and disorder segments 
but with some differences [U]. The non-linear lattice model we have presented here has 
applicfltions in the propagation of electrons in superladices and electromagnetic waves in 
dielectric materials. Although we have shown here explicitly only the results for positive 
potentials (A > 0 in equation (1)). it is worthwhile to mention that similar results exist 
for negative potentials with respect to the enhancement of long waves with small intensity 
by non-linearity. In the case of electromagnetic waves, equation (1) should be replaced 
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by a static Helmholtz equation, and similar but not identical transmission structures can be 
studied [151. 
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